Improvements in elastographic contrast-to-noise ratio using spatial-angular compounding.

نویسندگان

  • Udomchai Techavipoo
  • Tomy Varghese
چکیده

Spatial-angular compounding is a new technique developed for improving the signal-to-noise ratio (SNR) in elastography. Under this method, elastograms of a region-of-interest (ROI) are obtained from a spatially weighted average of local strain estimated along different insonification angles. In this article, we investigate the improvements in the strain contrast and contrast-to-noise ratio (CNR) of the spatially compounded elastograms. Spatial angular compounding is also applied and evaluated in conjunction with global temporal stretching. Quantitative experimental results obtained using a single-inclusion tissue-mimicking phantom demonstrate that the strain contrast reduces slightly but the CNR improves by around 8 to 13 dB. We also present experimental spatial angular compounding results obtained from an in vitro thermal lesion in canine liver tissue embedded in a gelatin phantom that demonstrate the improved visual characteristics (due to the improved CNR) of the compound elastogram. The experimental results provide guidelines for the practical range of maximum insonification angles and estimates of the optimum angular increment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial-angular compounding for elastography using beam steering on linear array transducers.

Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Under this method, compounded elastograms are obtained from a spatially weighted average of local strain estimated from radio frequency (rf) echo signals acquired at different insonification angles. In previous work, the acquisition of the rf signals was performed through the...

متن کامل

Freehand Spatial-Angular Compounding of Photoacoustic Images

Photoacoustic (PA) imaging is an emerging medical imaging modality that relies on the absorption of optical energy and the subsequent emission of acoustic waves that are detected with a conventional ultrasound probe. PA images are susceptible to background noise artifacts that reduce the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). We investigated spatial-angular compounding o...

متن کامل

Noise analysis and improvement of displacement vector estimation from angular displacements.

Elastography or elasticity imaging techniques typically image local strains or Young's modulus variations along the insonification direction. Recently, techniques that utilize angular displacement estimates obtained from multiple angular insonification of tissue have been reported. Angular displacement estimates obtained along different angular insonification directions have been utilized for s...

متن کامل

Spatial Angular Compounding of Photoacoustic Images

Photoacoustic (PA) images utilize pulsed lasers and ultrasound transducers to visualize targets with higher optical absorption than the surrounding medium. However, they are susceptible to acoustic clutter and background noise artifacts that obfuscate biomedical structures of interest. We investigated three spatial-angular compounding methods to improve PA image quality for biomedical applicati...

متن کامل

On the differences between two-dimensional and three-dimensional simulations for assessing elastographic image quality: a simulation study.

In this work, we introduced an elastographic simulation framework, which estimates upper bounds on elastographic image quality by accounting for three-dimensional (3D) tissue motion and the 3D nature of the ultrasound beam. For the boundary conditions and the range of applied strains considered in this study, it was observed that for applied strains smaller than 0.7%, fast two-dimensional (2D) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasound in medicine & biology

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2005